
AKD®2G
Modbus Communications Manual

Edition February 2021, Revision A
Part Number 907-200010-00
Keep allmanuals asa product component during the life span of the product.
Passallmanuals to future users/ownersof the product.

AKD2GModbus CommunicationManual |

Record of Document Revisions:

Revision Remarks Date

A Preliminary Edition 2/2021

Trademarks

l AKD is a registered trademark of Kollmorgen Corporation.
l MODBUS is a registered trademark of SCHNEIDER ELECTRIC USA, INC..

Technical changes which improve the performance of the device may be made without prior notice.
This document is the intellectual property of Kollmorgen. All rights reserved. No part of this work may be repro-
duced in any form (by photocopying, microfilm or any other method) or stored, processed, copied or dis-
tributed by electronic means without the written permission of Kollmorgen.

2 Kollmorgen | kdn.kollmorgen.com | February 2021

1 Modbus Overview
Modbus is a communication protocol that is used for reporting data from an industrial device to an HMI or PLC
by using a serial interface. Modbus TCP extends the protocol to TCP/IP networks by embedding the same
Protocol Data Unit (PDU) within TCP/IP packets. The AKD2G supports Modbus TCP with up to three con-
nections.

Most AKD2G drive parameters are supported over Modbus TCP.

Modbus is supported on all drive variants and can be used at the same time as using another fieldbus like
EtherCAT, CANopen or PROFINET.

Modbus uses the service/HMI port X20.

For information about theModbus protocol, see: http://www.modbus.org.

AKD2GModbus CommunicationManual | 1 Modbus Overview

Kollmorgen | kdn.kollmorgen.com | February 2021 3

http://www.modbus.org/

AKD2GModbus CommunicationManual | 2 Modbus Installation and Setup

2 Modbus Installation and Setup
Modbus TCP is provided over the HMI service port on the front of the drive by using the X20 connector
(RJ45), the connector used forWorkBench. Connect the drive and aModbus device such as an HMI to a
working Ethernet network. For ease of testing and configuration, connect a PC runningWorkBench to the
same network.

Once booted the drive displays its Ethernet IP address on the LCD display. The drive can be accessed using
Modbus with this IP address and utilizing port 502. WorkBench uses the same address, but a different port
number.

Once the devices are connected, the connected device can open a connection to the AKD2G using these set-
tings:

l IP Address: read from drive display orWorkBench connect screen
l Port: 502

If access is not required to the drives service port you can connect the AKD2G drive directly to the
HMI without an Ethernet switch. In this configuration both the AKD2G drive and HMI needs to be con-
figured with the static IP address on the same subnet.

To disable Modbus on AKD2G so the drive ignores all Modbus messages, set MODBUS.EN to 0 (dis-
abled). By default Modbus is enabled, MODBUS.EN = 1.

4 Kollmorgen | kdn.kollmorgen.com | February 2021

3 Modbus Commands
The following commands are provided to use with theModbus interface.

Commands Description

MODBUS.CLRERRORS Clears theModbus error log.

MODBUS.DATA Reads theModbus register values as seen inModbus.

MODBUS.EN Enables or disables theModbus interface.

MODBUS.ENDIAN Swaps word order for 32-bit values.

MODBUS.ERRORCOUNT The number of errors logged since the drive powered up or the error log was
cleared with MODBUS.CLRERRORS.

MODBUS.ERRORMODE Enables or disables Modbus error responsemessages.

MODBUS.ERRORS Lists the last twenty entries form theModbus error log.

MODBUS.INFO Returns information about the activeModbus connections.

MODBUS.KEEPALIVE Enables or disables theModbus keepalive fault.

MODBUS.LIST Lists all the parameters that can bemapped usingMODBUS.MAP.

MODBUS.MAP Sets the parameter mapped to eachModbus register.

MODBUS.MSGDUMP Prints any loggedModbus messages.

MODBUS.MSGLOG Enables or disables Modbus message logging.

MODBUS.RSTMAP Resets MODBUS.MAP to default map.

MODBUS.WATCHDOG Thewatchdog timeout in ms. 0 disables the watchdog.

AKD2GModbus CommunicationManual | 3 Modbus Commands

Kollmorgen | kdn.kollmorgen.com | February 2021 5

AKD2GModbus CommunicationManual | 4 Messaging Overview

4 Messaging Overview
Modbus TCP is a protocol that AKD2G uses to allow a HMI or PLC to read and write drive parameters for
instance AXIS2.VL.FB or DIN.STATES. When a read request is sent to the drive, the drive returns the value
of the specified parameter. When a write command is sent to the drive, the drive processes the data and
returns a response stating whether the write was successful or not.

SomeHMI’s can send the read and write commands for all tags on a screen to the drive at the same time.
This is called a block read/write. If a read or write from anHMI register is unsuccessful it may cause the other
objects on that HMI screen to not function properly.

AKD2G supports twoModbus function codes:

l ReadHolding Registers. Function code 3.
l Write Multiple Registers. Function code 16.

Modbus coils and discrete inputs are not supported.

Modbus holding registers are 16-bits in width. To access 32-bit quantities two consecutive 16-bit holding
registers are used. For more information of how parameters aremapped toModbus holding registers, seeMap-
ping 16-Bit Parameters as 32-Bit andMapping 32-bit Parameters and Endian.

4.1 Read Holding Registers (3)
This function code is used to read one or more registers from the drive.

Request

Header Transaction Identifier 2 Bytes Used for transaction pairing. A Modbus server returns in the
response the transaction identifier from the request.

Protocol Identifier 2 Bytes 0 = Modbus Protocol

Length 2 Bytes Number of following bytes including the unit identifier.

Unit Identifier 1 Byte Used for routing. AKD2G returns in the response the unit iden-
tifier from the request.

Data Function Code 1 Byte 0x03

Starting Address 2 Bytes 0 to 299. SeeMapping.

Quantity of Registers 2 Bytes 1 to 125. How many 16-bit values registers to read.

Normal Response

Header Transaction Identifier 2 Bytes Used for transaction pairing. A Modbus server copies in
the response the transaction identifier from the request.

Protocol Identifier 2 Bytes 0 = Modbus Protocol

Length 2 Bytes Number of following bytes including the unit identifier.

Unit Identifier 1 Byte Used for routing. AKD2G returns in the response the unit
identifier from the request.

Data Function Code 1 Byte 0x03

Byte Count 1 Byte How many data bytes follow. This is twice the Quantity of
Registers from the request message. 2 × N*

Register Value 2 × N*
Bytes

Data

6 Kollmorgen | kdn.kollmorgen.com | February 2021

*N = Quantity of Registers

Error Response

Header Transaction
Identifier

2
Bytes

Used for transaction pairing. A Modbus server copies in the response the
transaction identifier from the request.

Protocol Iden-
tifier

2
Bytes

0 = Modbus Protocol

Length 2
Bytes

3 = Number of following bytes including the unit identifier.

Unit Identifier 1
Byte

Used for routing. AKD2G returns in the response the unit identifier from
the request.

Data Function
Code

1
Byte

0x83

Exception
Code

1
Byte

SeeModbus Error and Exception Response Codes

Example
Following is an example of reading the position loop feedback, AXIS1.PL.FB, starting at address 188
(0x00BC), with an actual value of 0x2A05 F200.

Request

Header Transaction Identifier nn nn

Protocol Identifier 00 00

Length 00 06

Unit Identifier FF

Data Function 03

Starting Address 00 BC

Quantity of Registers 00 02

Response

Header Transaction Identifier nn nn

Protocol Identifier 00 00

Length 00 06

Unit Identifier FF

Data Function 03

Byte Count 08

Register 588 2A 05

Register 589 F2 00

AKD2GModbus CommunicationManual | 4 Messaging Overview

Kollmorgen | kdn.kollmorgen.com | February 2021 7

AKD2GModbus CommunicationManual | 4 Messaging Overview

4.2 Write Single Register (6)
This function code is used to write to one register and is supported in firmware versions from 02-05-02-000.

Request

Header Transaction
Identifier

2
Bytes

Used for transaction pairing. A Modbus server returns the response of the
transaction identifier from the request.

Protocol
Identifier

2
Bytes

0 = Modbus Protocol.

Length 2
Bytes

6 = Number of following bytes including the unit identifier.

Unit Iden-
tifier

1
Bytes

Used for routing. AKD2G returns in the response of the unit identifier from
the request.

Data Function
Code

1
Bytes

0x06.

Register
Address

2
Bytes

0 to 299. SeeMapping.

Register
Value

2
Bytes

Value that is written to the register.

Normal Response

Header Transaction
Identifier

2
Bytes

Used for transaction pairing. A Modbus server returns the response of the
transaction identifier from the request.

Protocol
Identifier

2
Bytes

0 = Modbus Protocol.

Length 2
Bytes

6 = Number of following bytes including the unit identifier.

Unit Iden-
tifier

1
Bytes

Used for routing. AKD2G returns the response of the unit identifier from the
request.

Data Function
Code

1
Bytes

0x06.

Register
Address

2
Bytes

0 to 299. Reflecting the address from the request.

Register
Value

2
Bytes

Echo of the value in the request.

Error Response

Header Transaction
Identifier

2
Bytes

Used for transaction pairing. A Modbus server returns the response of the
transaction identifier from the request.

Protocol
Identifier

2
Bytes

0 = Modbus Protocol.

Length 2
Bytes

3 = Number of following bytes including the unit identifier.

Unit Iden-
tifier

1
Bytes

Used for routing. AKD2G returns the response of the unit identifier from the
request.

8 Kollmorgen | kdn.kollmorgen.com | February 2021

Data Function
Code

1
Bytes

0x86.

Exception
Code

2
Bytes

SeeModbus Errors andModbus Error and Exception Response Codes .

Example
Following is an example of setting the register at address 122 (0x007A) to a value of 300000 (0x93E0).

Header Transaction Identifier nn nn

Protocol Identifier 00 00

Length 00 06

Unit Identifier FF

Data Function 06

Register Address 00 7A

Register 122 Data 93 E0

Response

Header Transaction Identifier nn nn

Protocol Identifier 00 00

Length 00 06

Unit Identifier FF

Data Function 06

Register Address 00 7A

Data Echo 93 E0

AKD2GModbus CommunicationManual | 4 Messaging Overview

Kollmorgen | kdn.kollmorgen.com | February 2021 9

AKD2GModbus CommunicationManual | 4 Messaging Overview

4.3 Write Multiple Registers (16)
This function code is used to write all registers of one drive parameter.

Request

Header Transaction
Identifier

2 Bytes Used for transaction pairing. A Modbus server returns in the response
the transaction identifier from the request.

Protocol Iden-
tifier

2 Bytes 0 = Modbus Protocol

Length 2 Bytes Number of following bytes including the unit identifier.

Unit Identifier 1 Byte Used for routing. AKD2G returns in the response the unit identifier from
the request.

Data Function
Code

1 Byte 0x10

Starting
Address

2 Bytes 0 to 299. SeeMapping.

Quantity of
Registers

2 Bytes 1 to 123. How many 16-bit values registers to write.

Byte Count 1 Byte How many data bytes follow. This is twice the Quantity of Registers. 2 x
N*

Register
Value

2 × N*
Bytes

Data

*N = Quantity of Registers

Normal Response

Header Transaction
Identifier

2
Bytes

Used for transaction pairing. A Modbus server returns in the response the
transaction identifier from the request.

Protocol Iden-
tifier

2
Bytes

0 = Modbus Protocol

Length 2
Bytes

Number of following bytes including the unit identifier.

Unit Identifier 1
Byte

Used for routing. AKD2G returns in the response the unit identifier from
the request.

Data Function
Code

1
Byte

0x10

Starting
Address

2
Bytes

0 to 299. Reflecting the address from the request.

Quantity of
Registers

2
Bytes

2 or 4

10 Kollmorgen | kdn.kollmorgen.com | February 2021

Error Response

Header Transaction
Identifier

2
Bytes

Used for transaction pairing. A Modbus server returns in the response the
transaction identifier from the request.

Protocol Iden-
tifier

2
Bytes

0 = Modbus Protocol

Length 2
Bytes

3 = Number of following bytes including the unit identifier.

Unit Identifier 1
Byte

Used for routing. AKD2G returns in the response the unit identifier from
the request.

Data Function
Code

1
Byte

0x90

Exception
Code

1
Byte

SeeModbus Error and Exception Response Codes

Example
Following is an example of setting the homing velocity, AXIS1.HOME.V, starting at address 122 (0x007A) to
a value of 300000 (0x0004 93E0).

Request

Header Transaction Identifier nn nn

Protocol Identifier 00 00

Length 00 0B

Unit Identifier FF

Data Function 10

Starting Address 00 7A

Quantity of Registers 00 02

Byte Count 04

Register 122 00 04

Register 123 93 E0

Response

Header Transaction Identifier nn nn

Protocol Identifier 00 00

Length 00 06

Unit Identifier FF

Data Function 10

Starting Address 00 7A

Quantity of Registers 00 02

AKD2GModbus CommunicationManual | 4 Messaging Overview

Kollmorgen | kdn.kollmorgen.com | February 2021 11

AKD2GModbus CommunicationManual | 4 Messaging Overview

4.4 Modbus Error and Exception Response Codes
If a Modbus transaction fails a code is returned indicating why it failed. AKD2G supports the following codes
from theModbus specification and additional codes for scenarios not covered by the standard codes.

Standard Codes

Code Description

1 Illegal Function The received function code is not supported by the drive. AKD2G only
supports function codes 3 and 16.

2 Illegal data address The received address is not supported by the drive. AKD2G only sup-
ports addresses 40001 to 40300. If multiple registers are being
accessed this code would be returned if any of the registers are bey-
ond the supported range.

3 Illegal Data Value Whenwriting to the drive the value sent is incorrect. The correct range
depends on which parameter is mapped to that register with
MODBUS.MAP.

4 Slave Device Failure An unexpected error occurred in the drive while processing theModbus
message.

5 Acknowledge Not generated by AKD2G.

6 Slave Device Busy Not generated by AKD2G.

8 Memory Parity Error Not generated by AKD2G.

10 Gateway Path Unavailable Not generated by AKD2G.

11 Gateway Target Device
Failed To Respond

Not generated by AKD2G.

Kollmorgen Specific Codes

Code Description

33 Register Not
Mapped

MODBUS.MAP is empty for this address.

34 Command
Error

Error reading or writing this register. MODBUS.ERRORS provides further details.

35 Invalid
Length

One of the following causes.

1. The received quantity of registers was zero.
2. The received quantity of registers was greater than 123 for writes or 125 for

reads.
3. When processing function code 16 (write multiple registers) the received byte

count was not twice the received quantity of registers.

12 Kollmorgen | kdn.kollmorgen.com | February 2021

4.5 Handling Broken Connections
AKD2G uses a watchdog timer and TCP keepalive to detect if communications between the drive and the
HMI has been lost.

TheModbus watchdog fault, F7100, is generated if the drive does not receive any Modbus messages within a
time window set by MODBUS.WATCHDOG. Zero disables the watchdog. The timer does not start until the
first Modbus message is received. If standard process is used to disconnect no fault is generated. There is no
need to write to a special register; any Modbus message resets the watchdog timer. If the drive stops receiv-
ingModbus messages faults will occur on both axes.

TheModbus/TCP specification indicates all Modbus ports must use the TCP keepalive feature. Keepalive
allows the AKD2G to detect if the connection is broken even if noModbus reads or writes are currently being
executed while the socket is open. This is achieved by injecting extra packets if no other Modbus messages
are being sent. Keepalive will fault if the cable is unplugged or cut or the PLC/HMI loses power unexpectedly.
The keepalive fault is number F7101. SettingMODBUS.KEEPALIVE to zero stops the keepalive fault from
being generated; by default faults will occur on both axes.

4.6 High Message Rates
SomeHMIs can sendModbus messages to drives at a very high rate. To allow the AKD2G drive to continue
working it must regulate how fast it processes Modbus messages. If someModbus messages are received
too quickly the AKD2G slows down its response to someModbus messages. The first few messages are
replied to promptly, subsequent messages take longer to be responded to.

MODBUS.INFO reports the current message rate for each open connection and if themessage rate is too
high or if themessage rate is throttled.

-->MODBUS.INFO
Connection count: 1
Connection 4 address: 192.168.1.5:61155
Connection 4 read count: 16
Connection 4 write count: 0
Connection 4 connect time: 9s
Connection 4 message rate: 1.818182 messages per second
Connection 4 high message rate: false
-->

4.7 Message Logging
The AKD2G drive records the contents of all Modbus messages sent to and from the drive. In addition to the
contents of the packets the IP address and port number or the remote endpoint are also recorded.
DRV.RUNTIME is also latched with eachmessage.

The logged data returned by MODBUS.MSGDUMP is shown exactly as it is transferred over Ethernet. See
Read Holding Registers (3) andWrite Multiple Registers (16) on how this data is formatted.

Themessage log contains the last twenty messages sent or received. Logging is turned on and off with
MODBUS.MSGLOG.

To enable logging set MODBUS.MSGDUMP = 1.

-->MODBUS.MSLOG 1
-->

To view the loggedmessages.

-->MODBUS.MSDUMP

AKD2GModbus CommunicationManual | 4 Messaging Overview

Kollmorgen | kdn.kollmorgen.com | February 2021 13

AKD2GModbus CommunicationManual | 4 Messaging Overview

39d:21h:30m:48s): 1 242 0 0 0 6 255 3 0 0 0 4 from 10.8.232.204:62944
39d:21h:30m:48s): 1 242 0 0 0 11 255 3 8 0 0 0 2 0 0 0 0 to
10.8.232.204:62944
39d:21h:30m:56s): 1 243 0 0 0 6 255 3 0 0 0 4 from 10.8.232.204:62944
39d:21h:30m:56s): 1 243 0 0 0 11 255 3 8 0 0 0 2 0 0 0 0 to
10.8.232.204:62944
-->

14 Kollmorgen | kdn.kollmorgen.com | February 2021

5 Mapping
The following table provides which parameters by default that are accessed by usingModbus. This mapping
is viewed and changed usingMODBUS.MAP.

-->MODBUS.MAP
[40001] AXIS1.PL.FB
[40002] AXIS1.PL.FB
[40003] AXIS1.VL.FBFILTERED
[40004] AXIS1.VL.FBFILTERED
[40005] AXIS1.ACTIVE
[40006] AXIS1.ACTIVE
[40007] Empty
[40008] Empty
…
-->

5.1 Default Map
When a AKD2G drive is received themapping is set by default as provided in the following table. Themap-
ping is reset back to the default mapping usingMODBUS.RSTMAP or DRV.RSTVAR .

Modbus
Address

Two Axis Drive One Axis Drive

40001 –
40002

AXIS1.PL.FB (see AXIS#.PL.FB) AXIS1.PL.FB (see AXIS#.PL.FB)

40003 –
40004

AXIS1.VL.FBFILTER (see
AXIS#.VL.FBFILTER)

AXIS1.VL.FBFILTER (see
AXIS#.VL.FBFILTER)

40005 –
40006

AXIS1.ACTIVE (see AXIS#.ACTIVE) AXIS1.ACTIVE (see AXIS#.ACTIVE)

40007 –
40008

AXIS1.MOTIONSTAT (see
AXIS#.MOTIONSTAT)

AXIS1.MOTIONSTAT (see
AXIS#.MOTIONSTAT)

40009 –
40010

AXIS1.DISSOURCES (see
AXIS#.DISSOURCES)

AXIS1.DISSOURCES (see
AXIS#.DISSOURCES)

40011 –
40012

AXIS1.FAULTED (see AXIS#.FAULTED) AXIS1.FAULTED (see AXIS#.FAULTED)

40013 –
40020

Empty Empty

40021 –
40022

AXIS1.MOTIONCONTROL (see
AXIS#.MOTIONCONTROL)

AXIS1.MOTIONCONTROL (see
AXIS#.MOTIONCONTROL)

40023 –
40024

AXIS1.MT.MOVE (see AXIS#.MT.MOVE) AXIS1.MT.MOVE (see AXIS#.MT.MOVE)

40025 –
40026

AXIS1.MT.ACC 0 (see AXIS#.MT.ACC) AXIS1.MT.ACC 0 (see AXIS#.MT.ACC)

40027 –
40028

AXIS1.MT.DEC 0 (see AXIS#.MT.DEC) AXIS1.MT.DEC 0 (see AXIS#.MT.DEC)

40029 –
40030

AXIS1.MT.V 0 (see AXIS#.MT.V) AXIS1.MT.V 0 (see AXIS#.MT.V)

AKD2GModbus CommunicationManual | 5 Mapping

Kollmorgen | kdn.kollmorgen.com | February 2021 15

AKD2GModbus CommunicationManual | 5 Mapping

Modbus
Address

Two Axis Drive One Axis Drive

40031 –
40032

AXIS1.MT.P 0 (see AXIS#.MT.P) AXIS1.MT.P 0 (see AXIS#.MT.P)

40033 –
40034

AXIS1.MT.CNTL 0 (see AXIS#.MT.CNTL) AXIS1.MT.CNTL 0 (see AXIS#.MT.CNTL)

40035 –
40050

Empty Empty

40051 –
40052

AXIS2.PL.FB (see AXIS#.PL.FB) Empty

40053 –
40054

AXIS2.VL.FBFILTER (see
AXIS#.VL.FBFILTER)

Empty

40055 –
40056

AXIS2.ACTIVE (see AXIS#.ACTIVE) Empty

40057 –
40058

AXIS2.MOTIONSTAT (see
AXIS#.MOTIONSTAT)

Empty

40059 –
40060

AXIS2.DISSOURCES (see
AXIS#.DISSOURCES)

Empty

40061 –
40062

AXIS2.FAULTED (see AXIS#.FAULTED) Empty

40063 –
40070

Empty Empty

40071 –
40072

AXIS2.MOTIONCONTROL (see
AXIS#.MOTIONCONTROL)

Empty

40073 –
40074

AXIS2.MT.MOVE (see AXIS#.MT.MOVE) Empty

40075 –
40076

AXIS2.MT.ACC 0 (see AXIS#.MT.ACC) Empty

40077 –
40078

AXIS2.MT.DEC 0 (see AXIS#.MT.DEC) Empty

40079 –
40080

AXIS2.MT.V 0 (see AXIS#.MT.V) Empty

40081 –
40082

AXIS2.MT.P 0 (see AXIS#.MT.P) Empty

40083 –
40084

AXIS2.MT.CNTL 0 (see AXIS#.MT.CNTL) Empty

40079 –
40100

Empty Empty

40101 –
40102

DIN.STATES DIN.STATES

40103 –
40300

Empty Empty

16 Kollmorgen | kdn.kollmorgen.com | February 2021

Reading from addresses marked “Empty” returns a zero and any value written to these addresses are
ignored. Writes to read only parameters are also ignored.

5.2 Modbus Addresses
Modbus implementations are not consistent with how addresses are shown. Here are two different ways Mod-
bus addresses are presented.

l Modbus Network Address
This is the 2-byte address that is part of the TCP message. For more information, see Read Holding
Registers (3) andWrite Multiple Registers (16) messages.
These addresses start at zero.
AKD2G supports network addresses in the range 0 to 299.

l Modbus HMI Address
This representation is commonly used with HMIs and PLCs.
This is the representation used by AKD2G.
The address is prefixed with 40000 to indicate this address is a holding register that is accessed with
function codes 3 and 16. It is common for these addresses to start at 1 not zero as used by theMod-
bus network address.
AKD2G supports HMI addresses in the range 40001 to 40300.

To convert fromModbus HMI addresses to network addresses subtract 40001.

Modbus HMI Address Modbus Network Address

40001 0

40002 1

…

40300 299

AKD2G uses 1-based addressing.

5.3 Editing the Map
AKD2G allows changing what parameter is read or written when accessing eachModbus address. Modbus
address between 40001 and 40300 can be remapped to access different parameters. Parameters that output
strings cannot bemapped.

For example to change theModbus address 40005 to AOUT2.VALUEU use the following.

-->MODBUS.MAP 40005 AOUT2.VALUEU
-->

To remove themapping for aModbus address set MAP to “Empty”.

-->MODBUS.MAP 40005 Empty
-->

Themapping can be changed at any time. Use DRV.NVSAVE to keep themodifiedmapping after power cyc-
ling the drive.

AKD2GModbus CommunicationManual | 5 Mapping

Kollmorgen | kdn.kollmorgen.com | February 2021 17

AKD2GModbus CommunicationManual | 5 Mapping

Not all drive parameters can be read or written over Modbus. The parameters that cannot bemapped over
Modbus aremostly accessing strings or printing information, for example DRV.INFO or DRV.NAME. If map-
ping a drive parameter that is not mappable usingMODBUS.MAP will return an error.

-->MODBUS.MAP 40001 DRV.INFO
Error: [0137] Parameter is not mappable.
-->

TheMODBUS.LIST command is used to list all drive parameters that can be used with MODBUS.MAP.

-->MODBUS.LIST
AIN1.CUTOFF,Float,32-bit,ReadWrite
AIN1.DEADBAND,Float,16-bit,ReadWrite
AIN1.DEADBANDMODE,Unsigned,16-bit,ReadWrite
AIN1.OFFSET,Float,16-bit,ReadWrite
AIN1.VALUE,Float,16-bit,ReadOnly
AIN2.CUTOFF,Float,32-bit,ReadWrite
AIN2.DEADBAND,Float,16-bit,ReadWrite
AIN2.DEADBANDMODE,Unsigned,16-bit,ReadWrite
AIN2.OFFSET,Float,16-bit,ReadWrite
AIN2.VALUE,Float,16-bit,ReadOnly
…
-->

Tomap an array parameter use a # symbol to append the index. Array parameters, such as AXIS#.MT.ACC,
are parameters where the index must be entered into the array after the parameter name.

-->AXIS1.MT.ACC 5
10000.170 [rpm/s]
-->MODBUS.MAP 40001 AXIS1.MT.ACC#5
-->

 Array parameters display as multiple lines in theMODBUS.LIST.

-->MODBUS.LIST
…
AXIS1.MT.ACC#1,Float,32-bit,ReadOnly
AXIS1.MT.ACC#2,Float,32-bit,ReadOnly
…
AXIS1.MT.ACC#32,Float,32-bit,ReadOnly
…
-->

18 Kollmorgen | kdn.kollmorgen.com | February 2021

5.4 Mapping 32-bit Parameters and Endian
Many of the AKD2G drive parameters are 32-bits. Use two 16-bit Modbus registers in contiguous addresses
to access a 32-bit parameter.

For example tomap AXIS1.PL.FB two addresses need to bemapped to the same parameter.

-->MODBUS.MAP 40005 AXIS1.PL.FB
-->MODBUS.MAP 40006 AXIS1.PL.FB
-->

By default, all accesses are big endian so the high word is in the lower address. This example demonstrates
how the data is arranged if AXIS.PL.FB is 360.

Modbus
Address

MODBUS.MAP MODBUS.DATA

40005 AXIS1.PL.FB 0 High word

40006 AXIS1.PL.FB 360 Low word

To switch to little endian set MODBUS.ENDIAN to 1.

--> MODBUS.ENDIAN 1
-->

The data in the two addresses now has the low word in the lower address.

Modbus
Address

MODBUS.MAP MODBUS.DATA

40005 AXIS1.PL.FB 360 Low word

40006 AXIS1.PL.FB 0 High word

If only one register is mapped for a 32-bit parameter then its only possible to read or write to the lower 16-bits
of the parameter.

5.5 Mapping 16-Bit Parameters as 32-Bit
When using someHMIs with AKD2G it is convenient to have every parameter appear in theModbus map as
a 32-bit value (two consecutive 16-bit Modbus registers).

If the same 16-bit parameter is mapped to two consecutiveModbus addresses the value can now be read and
written as a 32-bit quantity that is sign extended and uses the current endian choice.

For example, if USER.INT1 is 5 and big endian is selected, MODBUS.ENDIAN is 0, then the data returned
is:

Modbus
Address

MODBUS.MAP MODBUS.DATA

40001 USER.INT1 0 High word

40002 USER.INT1 5 Low word

AKD2GModbus CommunicationManual | 5 Mapping

Kollmorgen | kdn.kollmorgen.com | February 2021 19

AKD2GModbus CommunicationManual | 5 Mapping

If little endian is selected, MODBUS.ENDIAN is 1, then the data returned is:

Modbus
Address

MODBUS.MAP MODBUS.DATA

40001 USER.INT1 5 Low word

40002 USER.INT1 0 High word

If the parameter is signed the value that is returned is sign extended. For example, if USER.INT1 is -5 the
value returned with big endian selected is:

Modbus
Address

MODBUS.MAP MODBUS.DATA

40001 USER.INT1 65535 (FFFFh) High word

40002 USER.INT1 65531 (FFFBh) Low word

5.6 Edge Triggered Action Commands
AKD2G has a number of action commands that can bemapped over Modbus. For example AXIS2.EN,
AXIS2.DIS and AXIS1.MT.MOVE.

These action commands aremappable by MODBUS.LIST and are listed by using the “ActionCommand”
type.

-->MODBUS.LIST
…
DRV.DIS,ActionCommand,16-bit,ReadWrite
AXIS1.DIS,ActionCommand,16-bit,ReadWrite
AXIS1.EN,ActionCommand,16-bit,ReadWrite
AXIS1.CLRFAULTS,ActionCommand,16-bit,ReadWrite
AXIS1.MT.MOVE#0,ActionCommand,16-bit,ReadWrite
AXIS1.MT.MOVE#31,ActionCommand,16-bit,ReadWrite
…
-->

When these action commands aremapped toModbus they are 16-bit read-write registers. Any values to
these registers can be written and when the value is read back the last value that was written is provided. The
action is performed on a rising edge if the previous value was zero. Any non-zero value can be written to trig-
ger the action. Repeatedly writing a non-zero will only trigger the action on the first non-zero write. To trigger
the action again a zero needs to be written first.

Action commands are queued and are executed in the order they are issued. If a long command is issued (for
instance AXIS#.CLRFAULTS) followed by AXIS#.EN, the enable is not issued until the clear faults com-
mand is completed. If an ActionCommand fails it is logged toMODBUS.ERRORS.

For example to clear the faults on axis 2 over Modbus it is possible to map the action command to aModbus
register. Initially the register starts at zero and is set to zero if themapping changes. If 1 is written to theMod-
bus register, AXIS2.CLRFAULTS is executed on the drive.

-->MODBUS.MAP 40100 AXIS2.CLRFAULTS
-->MODBUS.DATA 40100
0
-->

20 Kollmorgen | kdn.kollmorgen.com | February 2021

5.7 USER.INT1 to USER.INT10
Sometimes there are scenarios where there is a need to perform actions that cannot be achieved with a single
parameter mapped over Modbus. AKD2G has a set of 10 scratchpad variables, USER.INT#, that users can
read and write to over Modbus. The action table is used to start complex operations that are triggered when
USER.INT# changes.

AKD2GModbus CommunicationManual | 5 Mapping

Kollmorgen | kdn.kollmorgen.com | February 2021 21

AKD2GModbus CommunicationManual | 6 Modbus Scaling

6 Modbus Scaling
When parameters are accessed over Modbus there are several scaling options: signed, unsigned and
float. MODBUS.LIST defines the type of scaling is used for each parameter that is accessed over Modbus.

When reading and writing parameters over Modbus they are scaled similarly inWorkBench.

6.1 Signed and Unsigned
Signed and unsigned are integers where the value that is passed over Modbus is the same value as displayed
inWorkBench.

For example if AXIS1.DISMODE is set to 2 inWorkBench then 2 is read or written over Modbus.

6.2 Float
These are floating point numbers. To use the fractional part the value is accessed over Modbus 1000 times
the value displayed inWorkBench. These parameters are always signed when access is throughModbus.

Example: if AXIS1.PL.KP is 3.270 inWorkBench then 3270 is read or written over Modbus.

This example demonstrates how axis units affect positions, velocities and accelerations. If AXIS1.PL.CMD
is 180 degrees with the units set to degrees, AXIS1.UNIT.PROTARY is 2, then 180000 is read over Modbus.

Caution should be taken when using AXIS#.UNIT Parameters. It is possible to set AXIS#.UNIT Parameters
so that they do not work as expected when reading or writing these parameters.

Example: if the units for position is counts, AXIS#.UNIT.PROTARY is 0. Counts exceeds the 32-bit range
accessible by usingModbus after one revolution. Setting AXIS#.UNIT.PROTARY to 2 sets the degrees and
the position range accessible with the 32-bit Modbus register as ±2147483 degrees and approximately 5965
revolutions.

When reading 32-bit parameters and the value exceeds 32-bits the value is truncated and the higher bits are
lost. Values larger than 32-bits cannot be written, if a 32-bit value is written the value is sign extended.

22 Kollmorgen | kdn.kollmorgen.com | February 2021

7 Modbus Errors
Up to twenty Modbus errors are stored in theModbus error list (MODBUS.ERRORS). If more errors occur,
the oldest error is dropped, and the new error is stored at the end of this list. MODBUS.ERRORCOUNT is
the number of errors logged since the drive powered up or the log was cleared with MODBUS.CLRERRORS.
All Modbus errors are stored regardless of the state of the error mode (MODBUS.ERRORMODE).

A block read/write request is always fully executed. If a register access causes an error, the error is added to
the error list and processing continues with the next register.

If MODBUS.ERRORMODE is set to 1, the drive will not return an error response. Check
MODBUS.ERRORS to verify that the last request was successfully completed. If it returns 0, the request
was successful.

Modbus Error Parameters Description

MODBUS.ERRORCOUNT The number of errors logged since the drive powered up or the error log was
cleared with MODBUS.CLRERRORS.

MODBUS.ERRORMODE Enables or disables error responsemessages:
0: Send error responsemessages
1: Do not send error responsemessages (default)

MODBUS.ERRORS Lists up to twenty Modbus errors. Each entry contains theModbus address
and the error code of the failedModbus request.

MODBUS.CLRERRORS Clears all errors stored inMODBUS.ERRORS.

TheWorkBench terminal displays the list of error messages:

-->MODBUS.ERRORCOUNT
2
-->MODBUS.ERRORS
(39d:21h:30m:48s) Write 40002: Modbus error code 34 (Command Error),
Error 7 (Command is read-only)
(39d:21h:45m:22s) Read 45001: Modbus error code 38 (Length Invalid)
-->

AKD2GModbus CommunicationManual | 7 Modbus Errors

Kollmorgen | kdn.kollmorgen.com | February 2021 23

AKD2GModbus CommunicationManual | 8 AKD2G vs. AKD: Modbus

8 AKD2G vs. AKD: Modbus
All Modbus addresses are dynamically mapped using parameter names with MODBUS.MAP.

AKD2G uses 1-based addressing vs. AKD uses zero-based.

The optional Modbus specific scaling that was supported in addition toWorkBench units was removed;
WorkBench units are used for all Modbus reads and writes.

The default for MODBUS.ERRORMODE changed from 0 to 1. The AKD2GModbus error log on contains
more information than the AKD drive. The AKD2GModbus error log is no longer readable with Modbus
registers andMODBUS.ERRORS must be used.

AKD2GDynamic mapping can be changed at any time with MODBUS.MAP. For AKD MODBUS.DYNMAP
must be set before changing themap andMODBUS.DYNMAP must be cleared when finished.

Dynamic mapping can only be changed by usingWorkBench when using theModbus screens or terminal.
AKD allows themapping to be changed by using theModbus register interface in addition toWorkBench.

The following table provides the equivalent Modbus parameters on AKD2G compared to AKD.

AKD AKD2G Notes

MODBUS.EN

MODBUS.INFO

MODBUS.ADDR MODBUS.MAP Uses different syntax

MODBUS.CLRDYNMAP MODBUS.RSTMAP

MODBUS.DATA

MODBUS.ENDIAN

MODBUS.WATCHDOG

MODBUS.KEEPALIVE

MODBUS.LIST

MODBUS.DYNMAP No longer needed with MODBUS.MAP

MODBUS.CLRERRORS MODBUS.CLRERRORS

MODBUS.DIO MapDIN.STATES,
DOUT.STATES,
DOUT#STATEU,
DIO.STATES,
DIO#.STATEU

MODBUS.DRV Map AXIS#.MOTIONCONTROL,
AXIS#.EN,
AXIS#.DIS,
AXIS#.STOP

MODBUS.DRVSTAT Map AXIS#.MOTIONSTAT,
AXIS#.ACTIVE,
AXIS#.SAFE.STO.ACTIVE,
AXIS#.HWLS.POSSTATE,
AXIS#.HWLS.NEGSTATE,
AXIS#.SWLS.STATE

MODBUS.ERRORMODE MODBUS.ERRORMODE

MODBUS.ERRORS MODBUS.ERRORS

24 Kollmorgen | kdn.kollmorgen.com | February 2021

AKD AKD2G Notes

MODBUS.ERRORCOUNT

MODBUS.HOME Map AXIS#.MOTIONCONTROL,
AXIS.HOME.MOVE,
AXIS#.HOME.SET

MODBUS.MOTOR Map AXIS#.MOTIONCONTROL,
AXIS#.MOTOR.BRAKE,
AXIS#.MOTOR.BRAKECONTROL

MODBUS.MSGDUMP MODBUS.MSGDUMP

MODBUS.MSGLOG MODBUS.MSGLOG

MODBUS.MT Map AXIS#.MT.MOVE

MODBUS.PIN
MODBUS.POUT
MODBUS.PSCALE
MODBUS.SCALING

Use AXIS#.UNIT parameters

MODBUS.SM Map AXIS#.MOTIONCONTROL,
AXIS#.SM/.MOVE,
AXIS#.STOP

AKD2GModbus CommunicationManual | 8 AKD2G vs. AKD: Modbus

Kollmorgen | kdn.kollmorgen.com | February 2021 25

About KOLLMORGEN

Kollmorgen is a leading provider of motion systems and components for machine builders. Through world-
class knowledge inmotion, industry-leading quality and deep expertise in linking and integrating standard
and custom products, Kollmorgen delivers breakthrough solutions that are unmatched in performance, reli-
ability and ease-of-use, givingmachine builders an irrefutable marketplace advantage.

Join the Kollmorgen Developer Network for product support. Ask the community ques-
tions, search the knowledge base for answers, get downloads, and suggest improve-
ments.

North America
KOLLMORGEN
201West Rock Road
Radford, VA 24141, USA
Web: www.kollmorgen.com
Mail: support@kollmorgen.com
Tel.: +1 - 540 - 633 - 3545
Fax: +1 - 540 - 639 - 4162

Europe
KOLLMORGEN Europe GmbH
Pempelfurtstr. 1
40880 Ratingen, Germany
Web: www.kollmorgen.com
Mail: technik@kollmorgen.com
Tel.: +49 - 2102 - 9394 - 0
Fax: +49 - 2102 - 9394 - 3155

South America
KOLLMORGEN
Avenida João Paulo Ablas, 2970
Jardim daGlória, Cotia – SP
CEP 06711-250, Brazil
Web: www.kollmorgen.com
Mail: contato@kollmorgen.com
Tel.: +55 11 4615-6300
Fax: +1 - 540 - 639 - 4162

China and SEA
KOLLMORGEN
Room 302, Building 5, Lihpao Plaza,
88 Shenbin Road, Minhang District,
Shanghai, China.
Web: www.kollmorgen.cn
Mail: sales.china@kollmorgen.com
Tel.: +86 - 400 668 2802
Fax: +86 - 21 6248 5367

http://kdn.kollmorgen.com/
http://kdn.kollmorgen.com/
http://www.kollmorgen.com/
mailto:support@kollmorgen.com
http://www.kollmorgen.com/
mailto:technik@kollmorgen.com
http://www.kollmorgen.com/
mailto:contato@kollmorgen.com
http://www.kollmorgen.cn/
mailto:sales.china@kollmorgen.com

	1 Modbus Overview
	2 Modbus Installation and Setup
	3 Modbus Commands
	4 Messaging Overview
	4.1 Read Holding Registers (3)
	4.2 Write Single Register (6)
	4.3 Write Multiple Registers (16)
	4.4 Modbus Error and Exception Response Codes
	4.5 Handling Broken Connections
	4.6 High Message Rates
	4.7 Message Logging

	5 Mapping
	5.1 Default Map
	5.2 Modbus Addresses
	5.3 Editing the Map
	5.4 Mapping 32-bit Parameters and Endian
	5.5 Mapping 16-Bit Parameters as 32-Bit
	5.6 Edge Triggered Action Commands
	5.7 USER.INT1 to USER.INT10

	6 Modbus Scaling
	6.1 Signed and Unsigned
	6.2 Float

	7 Modbus Errors
	8 AKD2G vs. AKD: Modbus

